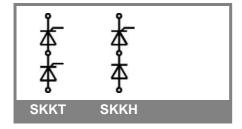
SKKT 570, SKKH 570

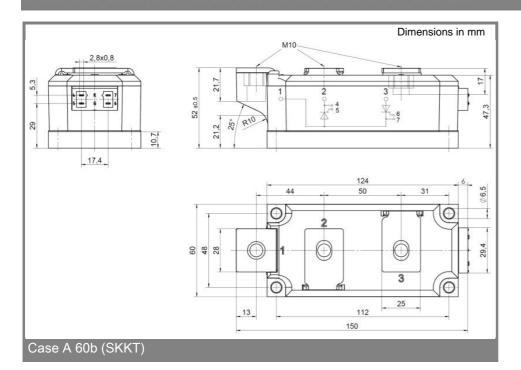
Thyristor / Diode Modules

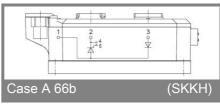
SKKT 570, SKKH 570

Target Data

Features


- Heat transfer through aluminium nitride ceramic insulated metal baseplate
- Hard soldered joints for high reliability
- UL recognition pending


Typical Applications


- · AC motor softstarters
- Input converters for AC inverter drives
- DC motor control (e.g. for machine tools)
- Temperature control (e.g. for ovens, chemical, processes)
- Professionals light dimming (studios, theaters)

V _{RSM}	V_{RRM}, V_{DRM}	I _{TRMS} = 1000 A (maximum value for continuous operation)		
V	V	I _{TAV} = 570 A (sin. 180; T _c = 85 °C)		
1300	1200	SKKT 570/12 E	SKKH 570/12 E	
1700	1600	SKKT 570/16 E	SKKH 570/16 E	
1900	1800	SKKT 570/18 E	SKKH 570/18 E	

Symbol	Conditions	Values	Units
I _{TAV}	sin. 180; T _c = 85 (100) °C;	570 (435)	Α
I _{TSM}	T _{vi} = 25 °C; 10 ms	19000	Α
	T _{vi} = 135 °C; 10 ms	15500	Α
i²t	T _{vj} = 25 °C; 8,3 10 ms	1805000	A²s
	T _{vj} = 135 °C; 8,3 10 ms	1201250	A²s
V_{T}	T _{vj} = 25 °C; I _T = 1700 A	max. 1,44	V
$V_{T(TO)}$	T _{vi} = 135 °C	max. 0,78	V
r _T `	$T_{vj} = 135 ^{\circ}\text{C}$	max. 0,32	$m\Omega$
$I_{DD}; I_{RD}$	T_{vj} = 135 °C; V_{RD} = V_{RRM} , V_{DD} = V_{DRM}	max. 200	mA
t _{gd}	$T_{vj} = 25 ^{\circ}\text{C}; I_{G} = 1 \text{A}; di_{G}/dt = 1 \text{A/}\mu\text{s}$	1	μs
t _{gr}	V _D = 0,67 * V _{DRM}	2	μs
(di/dt) _{cr}	T _{vj} = 135 °C	max. 250	A/µs
(dv/dt) _{cr}	T _{vj} = 135 °C	max. 1000	V/µs
t_q	$T_{vj} = 135 ^{\circ}\text{C}$,		μs
I _H	T_{vj} = 25 °C; typ. / max.	150 / 500	mA
I_{L}	T_{vj} = 25 °C; R_G = 33 Ω ; typ. / max.	300 / 2000	mA
V _{GT}	T_{vj} = 25 °C; d.c.	min. 3	V
I _{GT}	$T_{vj} = 25 ^{\circ}\text{C}; \text{d.c.}$	min. 200	mA
V_{GD}	$T_{vj} = 135 ^{\circ}\text{C}; \text{d.c.}$	max. 0,25	V
I_{GD}	T _{vj} = 135 °C; d.c.	max. 10	mA
R _{th(j-c)}	cont.; per thyristor / per module	0,069 / 0,034	K/W
R _{th(j-c)}	sin. 180°; per thyristor / per module	0,072 / 0,036	K/W
R _{th(j-c)}	rec. 120°; per thyristor / per module	0,077 / 0,038	K/W
$R_{th(c-s)}$	per thyristor / per module	0,02 / 0,01	K/W
T_{vj}		- 40 + 135	°C
T_{stg}		- 40 + 125	°C
V _{isol}	a.c. 50 Hz; r.m.s.; 1 s / 1 min.	3600 / 3000	V~
M_s	to heatsink	5 ± 15% ¹⁾	Nm
M_t	to terminals	12 ± 15% ²⁾	Nm
а		5 * 9,81	m/s²
m	approx.	1400	g
Case	SKKT	A 60b	
	SKKH	A 66b	

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.